Analyzing and Modeling of Water Transport Phenomena in Open-Cathode Polymer Electrolyte Membrane Fuel Cell
نویسندگان
چکیده
Water management is one issue that must be surpassed to ensure high membrane proton conductivity and adequate reactant transport in the membrane-electrode assembly (MEA) simultaneously. A well-designed water system based on a comprehensive understanding of inner part polymer electrolyte (PEM) fuel cell. In this work, phenomena MEA PEM cell are analyzed by using mathematical model. The diluted species interface used model ionomer phase catalytic layer domains. molecular flux defined Nernst–Planck equations, including migration Fickian diffusion parameters obtained experimentally for diffusivity mobility drag fully humidified membrane. proposed 1D includes anode gas channel, cathode (GDL), GDL, catalyst layer, exchange activity, conductivity, output voltage predicted changing humidity side
منابع مشابه
Modeling transport in polymer-electrolyte fuel cells.
In this review, we have examined the different models for polymer-electrolyte fuel cells operating with hydrogen. The major focus has been on transport of the various species within the fuel cell. The different regions of the fuel cell were examined, and their modeling methodologies and equations were elucidated. In particular, the 1-D fuel-cell sandwich was discussed thoroughly because it is t...
متن کاملModeling and Simulation for Fuel Cell Polymer Electrolyte Membrane
We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach w...
متن کاملNumerical analysis of reactant transport in the novel tubular polymer electrolyte membrane fuel cells
In present work, numerical analysis of three novel PEM fuel cells with tubular geometry was conducted. Tree different cross section was considered for PEM, namely: circular, square and triangular. Similar boundary and operational conditions is applied for all the geometries. At first, the obtained polarization curve for basic architecture fuel cells was validated with experimental data and then...
متن کاملEvaluating Cathode Catalysts in the Polymer Electrolyte Fuel Cell
The polymer electrolyte membrane fuel cell (PEMFC) converts the chemical energy of hydrogen and oxygen (air) into usable electrical energy. At the cathode (the positive electrode), a considerable amount of platinum is generally required to catalyse the sluggish oxygen reduction reaction (ORR). This has implications regarding the cost in high-power applications, and for making a broad commercial...
متن کاملOxygen Mass Transport Limitations at the Cathode of Polymer Electrolyte Membrane Fuel Cells
Oxygen transport across the cathode gas diffusion layer (GDL) in polymer electrolyte membrane (PEM) fuel cells was examined by varying the O2/N2 ratio and by varying the area of the GDL extending laterally from the gas flow channel under the bipolar plate (under the land). As the cathode is depleted of oxygen, the current density becomes limited by oxygen transport across the GDL. Oxygen deplet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11135964